root/thread_pthread.c

/* [previous][next][first][last][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. native_mutex_lock
  2. native_mutex_unlock
  3. native_mutex_trylock
  4. native_mutex_initialize
  5. native_mutex_destroy
  6. native_cond_initialize
  7. native_cond_destroy
  8. native_cond_signal
  9. native_cond_broadcast
  10. native_cond_wait
  11. native_cond_timedwait
  12. null_func
  13. ruby_thread_from_native
  14. ruby_thread_set_native
  15. Init_native_thread
  16. native_thread_destroy
  17. get_stack
  18. ruby_init_stack
  19. native_thread_init_stack
  20. thread_start_func_1
  21. register_cached_thread_and_wait
  22. use_cached_thread
  23. native_thread_create
  24. native_thread_join
  25. native_thread_apply_priority
  26. ubf_pthread_cond_signal
  27. ubf_select_each
  28. ubf_select
  29. native_sleep
  30. print_signal_list
  31. add_signal_thread_list
  32. remove_signal_thread_list
  33. get_ts
  34. thread_timer
  35. rb_thread_create_timer_thread
  36. native_stop_timer_thread
  37. ruby_stack_overflowed_p

/* -*-c-*- */
/**********************************************************************

  thread_pthread.c -

  $Author: yugui $

  Copyright (C) 2004-2007 Koichi Sasada

**********************************************************************/

#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION

#include "gc.h"

#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif

static void native_mutex_lock(pthread_mutex_t *lock);
static void native_mutex_unlock(pthread_mutex_t *lock);
static int native_mutex_trylock(pthread_mutex_t *lock);
static void native_mutex_initialize(pthread_mutex_t *lock);
static void native_mutex_destroy(pthread_mutex_t *lock);

static void native_cond_signal(pthread_cond_t *cond);
static void native_cond_broadcast(pthread_cond_t *cond);
static void native_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
static void native_cond_initialize(pthread_cond_t *cond);
static void native_cond_destroy(pthread_cond_t *cond);

static void
native_mutex_lock(pthread_mutex_t *lock)
{
    int r;
    if ((r = pthread_mutex_lock(lock)) != 0) {
        rb_bug("pthread_mutex_lock: %d", r);
    }
}

static void
native_mutex_unlock(pthread_mutex_t *lock)
{
    int r;
    if ((r = pthread_mutex_unlock(lock)) != 0) {
        rb_bug("native_mutex_unlock return non-zero: %d", r);
    }
}

static inline int
native_mutex_trylock(pthread_mutex_t *lock)
{
    int r;
    if ((r = pthread_mutex_trylock(lock)) != 0) {
        if (r == EBUSY) {
            return EBUSY;
        }
        else {
            rb_bug("native_mutex_trylock return non-zero: %d", r);
        }
    }
    return 0;
}

static void
native_mutex_initialize(pthread_mutex_t *lock)
{
    int r = pthread_mutex_init(lock, 0);
    if (r != 0) {
        rb_bug("native_mutex_initialize return non-zero: %d", r);
    }
}

static void
native_mutex_destroy(pthread_mutex_t *lock)
{
    int r = pthread_mutex_destroy(lock);
    if (r != 0) {
        rb_bug("native_mutex_destroy return non-zero: %d", r);
    }
}

static void
native_cond_initialize(pthread_cond_t *cond)
{
    int r = pthread_cond_init(cond, 0);
    if (r != 0) {
        rb_bug("native_cond_initialize return non-zero: %d", r);
    }
}

static void
native_cond_destroy(pthread_cond_t *cond)
{
    int r = pthread_cond_destroy(cond);
    if (r != 0) {
        rb_bug("native_cond_destroy return non-zero: %d", r);
    }
}

static void
native_cond_signal(pthread_cond_t *cond)
{
    pthread_cond_signal(cond);
}

static void
native_cond_broadcast(pthread_cond_t *cond)
{
    pthread_cond_broadcast(cond);
}

static void
native_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
    pthread_cond_wait(cond, mutex);
}

static int
native_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, struct timespec *ts)
{
    return pthread_cond_timedwait(cond, mutex, ts);
}


#define native_cleanup_push pthread_cleanup_push
#define native_cleanup_pop  pthread_cleanup_pop
#ifdef HAVE_SCHED_YIELD
#define native_thread_yield() (void)sched_yield()
#else
#define native_thread_yield() ((void)0)
#endif

#ifndef __CYGWIN__
static void add_signal_thread_list(rb_thread_t *th);
#endif
static void remove_signal_thread_list(rb_thread_t *th);

static rb_thread_lock_t signal_thread_list_lock;

static pthread_key_t ruby_native_thread_key;

static void
null_func(int i)
{
    /* null */
}

static rb_thread_t *
ruby_thread_from_native(void)
{
    return pthread_getspecific(ruby_native_thread_key);
}

static int
ruby_thread_set_native(rb_thread_t *th)
{
    return pthread_setspecific(ruby_native_thread_key, th) == 0;
}

static void
Init_native_thread(void)
{
    rb_thread_t *th = GET_THREAD();

    pthread_key_create(&ruby_native_thread_key, NULL);
    th->thread_id = pthread_self();
    native_cond_initialize(&th->native_thread_data.sleep_cond);
    ruby_thread_set_native(th);
    native_mutex_initialize(&signal_thread_list_lock);
    posix_signal(SIGVTALRM, null_func);
}

static void
native_thread_destroy(rb_thread_t *th)
{
    pthread_mutex_destroy(&th->interrupt_lock);
    pthread_cond_destroy(&th->native_thread_data.sleep_cond);
}

#define USE_THREAD_CACHE 0

#if STACK_GROW_DIRECTION
#define STACK_GROW_DIR_DETECTION
#define STACK_DIR_UPPER(a,b) STACK_UPPER(0, a, b)
#else
#define STACK_GROW_DIR_DETECTION VALUE stack_grow_dir_detection
#define STACK_DIR_UPPER(a,b) STACK_UPPER(&stack_grow_dir_detection, a, b)
#endif

#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
#define STACKADDR_AVAILABLE 1
#endif

#ifdef STACKADDR_AVAILABLE
static int
get_stack(void **addr, size_t *size)
{
#define CHECK_ERR(expr)                         \
    {int err = (expr); if (err) return err;}
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
    pthread_attr_t attr;
    size_t guard = 0;

# ifdef HAVE_PTHREAD_GETATTR_NP
    CHECK_ERR(pthread_getattr_np(pthread_self(), &attr));
#   ifdef HAVE_PTHREAD_ATTR_GETSTACK
    CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
#   else
    CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
    CHECK_ERR(pthread_attr_getstacksize(&attr, size));
#   endif
    if (pthread_attr_getguardsize(&attr, &guard) == 0) {
        STACK_GROW_DIR_DETECTION;
        STACK_DIR_UPPER((void)0, *addr = (char *)*addr + guard);
        *size -= guard;
    }
# else
    CHECK_ERR(pthread_attr_init(&attr));
    CHECK_ERR(pthread_attr_get_np(pthread_self(), &attr));
    CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
    CHECK_ERR(pthread_attr_getstacksize(&attr, size));
# endif
    CHECK_ERR(pthread_attr_getguardsize(&attr, &guard));
# ifndef HAVE_PTHREAD_GETATTR_NP
    pthread_attr_destroy(&attr);
# endif
    size -= guard;
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
    pthread_t th = pthread_self();
    *addr = pthread_get_stackaddr_np(th);
    *size = pthread_get_stacksize_np(th);
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
    stack_t stk;
# if defined HAVE_THR_STKSEGMENT
    CHECK_ERR(thr_stksegment(&stk));
# else
    CHECK_ERR(pthread_stackseg_np(pthread_self(), &stk));
# endif
    *addr = stk.ss_sp;
    *size = stk.ss_size;
#endif
    return 0;
#undef CHECK_ERR
}
#endif

static struct {
    rb_thread_id_t id;
    size_t stack_maxsize;
    VALUE *stack_start;
#ifdef __ia64
    VALUE *register_stack_start;
#endif
} native_main_thread;

#ifdef STACK_END_ADDRESS
extern void *STACK_END_ADDRESS;
#endif

#undef ruby_init_stack
void
ruby_init_stack(VALUE *addr
#ifdef __ia64
    , void *bsp
#endif
    )
{
    native_main_thread.id = pthread_self();
#ifdef STACK_END_ADDRESS
    native_main_thread.stack_start = STACK_END_ADDRESS;
#else
    if (!native_main_thread.stack_start ||
        STACK_UPPER(&addr,
                    native_main_thread.stack_start > addr,
                    native_main_thread.stack_start < addr)) {
        native_main_thread.stack_start = addr;
    }
#endif
#ifdef __ia64
    if (!native_main_thread.register_stack_start ||
        (VALUE*)bsp < native_main_thread.register_stack_start) {
        native_main_thread.register_stack_start = (VALUE*)bsp;
    }
#endif
#ifdef HAVE_GETRLIMIT
    {
        struct rlimit rlim;

        if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
            unsigned int space = rlim.rlim_cur/5;

            if (space > 1024*1024) space = 1024*1024;
            native_main_thread.stack_maxsize = rlim.rlim_cur - space;
        }
    }
#endif
}

#define CHECK_ERR(expr) \
    {int err = (expr); if (err) {rb_bug("err: %d - %s", err, #expr);}}

static int
native_thread_init_stack(rb_thread_t *th)
{
    rb_thread_id_t curr = pthread_self();

    if (pthread_equal(curr, native_main_thread.id)) {
        th->machine_stack_start = native_main_thread.stack_start;
        th->machine_stack_maxsize = native_main_thread.stack_maxsize;
    }
    else {
#ifdef HAVE_PTHREAD_GETATTR_NP
        pthread_attr_t attr;
        void *start;
        CHECK_ERR(pthread_getattr_np(curr, &attr));
# if defined HAVE_PTHREAD_ATTR_GETSTACK
        CHECK_ERR(pthread_attr_getstack(&attr, &start, &th->machine_stack_maxsize));
# elif defined HAVE_PTHREAD_ATTR_GETSTACKSIZE && defined HAVE_PTHREAD_ATTR_GETSTACKADDR
        CHECK_ERR(pthread_attr_getstackaddr(&attr, &start));
        CHECK_ERR(pthread_attr_getstacksize(&attr, &th->machine_stack_maxsize));
# endif
        th->machine_stack_start = start;
#else
        rb_raise(rb_eNotImpError, "ruby engine can initialize only in the main thread");
#endif
    }
#ifdef __ia64
    th->machine_register_stack_start = native_main_thread.register_stack_start;
    th->machine_stack_maxsize /= 2;
    th->machine_register_stack_maxsize = th->machine_stack_maxsize;
#endif
    return 0;
}

static void *
thread_start_func_1(void *th_ptr)
{
#if USE_THREAD_CACHE
  thread_start:
#endif
    {
        rb_thread_t *th = th_ptr;
        VALUE stack_start;

        /* run */
        thread_start_func_2(th, &stack_start, rb_ia64_bsp());
    }
#if USE_THREAD_CACHE
    if (1) {
        /* cache thread */
        rb_thread_t *th;
        static rb_thread_t *register_cached_thread_and_wait(void);
        if ((th = register_cached_thread_and_wait()) != 0) {
            th_ptr = (void *)th;
            th->thread_id = pthread_self();
            goto thread_start;
        }
    }
#endif
    return 0;
}

void rb_thread_create_control_thread(void);

struct cached_thread_entry {
    volatile rb_thread_t **th_area;
    pthread_cond_t *cond;
    struct cached_thread_entry *next;
};


#if USE_THREAD_CACHE
static pthread_mutex_t thread_cache_lock = PTHREAD_MUTEX_INITIALIZER;
struct cached_thread_entry *cached_thread_root;

static rb_thread_t *
register_cached_thread_and_wait(void)
{
    pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
    volatile rb_thread_t *th_area = 0;
    struct cached_thread_entry *entry =
      (struct cached_thread_entry *)malloc(sizeof(struct cached_thread_entry));

    struct timeval tv;
    struct timespec ts;
    gettimeofday(&tv, 0);
    ts.tv_sec = tv.tv_sec + 60;
    ts.tv_nsec = tv.tv_usec * 1000;

    pthread_mutex_lock(&thread_cache_lock);
    {
        entry->th_area = &th_area;
        entry->cond = &cond;
        entry->next = cached_thread_root;
        cached_thread_root = entry;

        pthread_cond_timedwait(&cond, &thread_cache_lock, &ts);

        {
            struct cached_thread_entry *e = cached_thread_root;
            struct cached_thread_entry *prev = cached_thread_root;

            while (e) {
                if (e == entry) {
                    if (prev == cached_thread_root) {
                        cached_thread_root = e->next;
                    }
                    else {
                        prev->next = e->next;
                    }
                    break;
                }
                prev = e;
                e = e->next;
            }
        }

        free(entry); /* ok */
        pthread_cond_destroy(&cond);
    }
    pthread_mutex_unlock(&thread_cache_lock);

    return (rb_thread_t *)th_area;
}
#endif

static int
use_cached_thread(rb_thread_t *th)
{
    int result = 0;
#if USE_THREAD_CACHE
    struct cached_thread_entry *entry;

    if (cached_thread_root) {
        pthread_mutex_lock(&thread_cache_lock);
        entry = cached_thread_root;
        {
            if (cached_thread_root) {
                cached_thread_root = entry->next;
                *entry->th_area = th;
                result = 1;
            }
        }
        if (result) {
            pthread_cond_signal(entry->cond);
        }
        pthread_mutex_unlock(&thread_cache_lock);
    }
#endif
    return result;
}

static int
native_thread_create(rb_thread_t *th)
{
    int err = 0;

    if (use_cached_thread(th)) {
        thread_debug("create (use cached thread): %p\n", (void *)th);
    }
    else {
        pthread_attr_t attr;
        size_t stack_size = 512 * 1024; /* 512KB */
        size_t space;

#ifdef PTHREAD_STACK_MIN
        if (stack_size < PTHREAD_STACK_MIN) {
            stack_size = PTHREAD_STACK_MIN * 2;
        }
#endif
        space = stack_size/5;
        if (space > 1024*1024) space = 1024*1024;
        th->machine_stack_maxsize = stack_size - space;
#ifdef __ia64
        th->machine_stack_maxsize /= 2;
        th->machine_register_stack_maxsize = th->machine_stack_maxsize;
#endif

        CHECK_ERR(pthread_attr_init(&attr));

#ifdef PTHREAD_STACK_MIN
        thread_debug("create - stack size: %lu\n", (unsigned long)stack_size);
        CHECK_ERR(pthread_attr_setstacksize(&attr, stack_size));
#endif

#ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
        CHECK_ERR(pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
#endif
        CHECK_ERR(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));

        err = pthread_create(&th->thread_id, &attr, thread_start_func_1, th);
        thread_debug("create: %p (%d)", (void *)th, err);
        CHECK_ERR(pthread_attr_destroy(&attr));

        if (!err) {
            pthread_cond_init(&th->native_thread_data.sleep_cond, 0);
        }
        else {
            st_delete_wrap(th->vm->living_threads, th->self);
            th->status = THREAD_KILLED;
            rb_raise(rb_eThreadError, "can't create Thread (%d)", err);
        }
    }
    return err;
}

static void
native_thread_join(pthread_t th)
{
    int err = pthread_join(th, 0);
    if (err) {
        rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err);
    }
}


#if USE_NATIVE_THREAD_PRIORITY

static void
native_thread_apply_priority(rb_thread_t *th)
{
#if defined(_POSIX_PRIORITY_SCHEDULING) && (_POSIX_PRIORITY_SCHEDULING > 0)
    struct sched_param sp;
    int policy;
    int priority = 0 - th->priority;
    int max, min;
    pthread_getschedparam(th->thread_id, &policy, &sp);
    max = sched_get_priority_max(policy);
    min = sched_get_priority_min(policy);

    if (min > priority) {
        priority = min;
    }
    else if (max < priority) {
        priority = max;
    }

    sp.sched_priority = priority;
    pthread_setschedparam(th->thread_id, policy, &sp);
#else
    /* not touched */
#endif
}

#endif /* USE_NATIVE_THREAD_PRIORITY */

static void
ubf_pthread_cond_signal(void *ptr)
{
    rb_thread_t *th = (rb_thread_t *)ptr;
    thread_debug("ubf_pthread_cond_signal (%p)\n", (void *)th);
    pthread_cond_signal(&th->native_thread_data.sleep_cond);
}

#ifndef __CYGWIN__
static void
ubf_select_each(rb_thread_t *th)
{
    thread_debug("ubf_select_each (%p)\n", (void *)th->thread_id);
    if (th) {
        pthread_kill(th->thread_id, SIGVTALRM);
    }
}

static void
ubf_select(void *ptr)
{
    rb_thread_t *th = (rb_thread_t *)ptr;
    add_signal_thread_list(th);
    ubf_select_each(th);
}
#else
#define ubf_select 0
#endif

#define PER_NANO 1000000000

static void
native_sleep(rb_thread_t *th, struct timeval *tv)
{
    struct timespec ts;
    struct timeval tvn;

    if (tv) {
        gettimeofday(&tvn, NULL);
        ts.tv_sec = tvn.tv_sec + tv->tv_sec;
        ts.tv_nsec = (tvn.tv_usec + tv->tv_usec) * 1000;
        if (ts.tv_nsec >= PER_NANO){
            ts.tv_sec += 1;
            ts.tv_nsec -= PER_NANO;
        }
    }

    thread_debug("native_sleep %ld\n", tv ? tv->tv_sec : -1);
    GVL_UNLOCK_BEGIN();
    {
        pthread_mutex_lock(&th->interrupt_lock);
        th->unblock.func = ubf_pthread_cond_signal;
        th->unblock.arg = th;

        if (RUBY_VM_INTERRUPTED(th)) {
            /* interrupted.  return immediate */
            thread_debug("native_sleep: interrupted before sleep\n");
        }
        else {
            if (tv == 0 || ts.tv_sec < tvn.tv_sec /* overflow */ ) {
                int r;
                thread_debug("native_sleep: pthread_cond_wait start\n");
                r = pthread_cond_wait(&th->native_thread_data.sleep_cond,
                                      &th->interrupt_lock);
                if (r) rb_bug("pthread_cond_wait: %d", r);
                thread_debug("native_sleep: pthread_cond_wait end\n");
            }
            else {
                int r;
                thread_debug("native_sleep: pthread_cond_timedwait start (%ld, %ld)\n",
                             (unsigned long)ts.tv_sec, ts.tv_nsec);
                r = pthread_cond_timedwait(&th->native_thread_data.sleep_cond,
                                           &th->interrupt_lock, &ts);
                if (r && r != ETIMEDOUT) rb_bug("pthread_cond_timedwait: %d", r);

                thread_debug("native_sleep: pthread_cond_timedwait end (%d)\n", r);
            }
        }
        th->unblock.func = 0;
        th->unblock.arg = 0;

        pthread_mutex_unlock(&th->interrupt_lock);
    }
    GVL_UNLOCK_END();

    thread_debug("native_sleep done\n");
}

struct signal_thread_list {
    rb_thread_t *th;
    struct signal_thread_list *prev;
    struct signal_thread_list *next;
};

#ifndef __CYGWIN__
static struct signal_thread_list signal_thread_list_anchor = {
    0, 0, 0,
};
#endif

#define FGLOCK(lock, body) do { \
    native_mutex_lock(lock); \
    { \
        body; \
    } \
    native_mutex_unlock(lock); \
} while (0)

#if 0 /* for debug */
static void
print_signal_list(char *str)
{
    struct signal_thread_list *list =
      signal_thread_list_anchor.next;
    thread_debug("list (%s)> ", str);
    while(list){
        thread_debug("%p (%p), ", list->th, list->th->thread_id);
        list = list->next;
    }
    thread_debug("\n");
}
#endif

#ifndef __CYGWIN__
static void
add_signal_thread_list(rb_thread_t *th)
{
    if (!th->native_thread_data.signal_thread_list) {
        FGLOCK(&signal_thread_list_lock, {
            struct signal_thread_list *list =
              malloc(sizeof(struct signal_thread_list));

            if (list == 0) {
                fprintf(stderr, "[FATAL] failed to allocate memory\n");
                exit(1);
            }

            list->th = th;

            list->prev = &signal_thread_list_anchor;
            list->next = signal_thread_list_anchor.next;
            if (list->next) {
                list->next->prev = list;
            }
            signal_thread_list_anchor.next = list;
            th->native_thread_data.signal_thread_list = list;
        });
    }
}
#endif

static void
remove_signal_thread_list(rb_thread_t *th)
{
    if (th->native_thread_data.signal_thread_list) {
        FGLOCK(&signal_thread_list_lock, {
            struct signal_thread_list *list =
              (struct signal_thread_list *)
                th->native_thread_data.signal_thread_list;

            list->prev->next = list->next;
            if (list->next) {
                list->next->prev = list->prev;
            }
            th->native_thread_data.signal_thread_list = 0;
            list->th = 0;
            free(list); /* ok */
        });
    }
    else {
        /* */
    }
}

static pthread_t timer_thread_id;
static pthread_cond_t timer_thread_cond = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t timer_thread_lock = PTHREAD_MUTEX_INITIALIZER;

static struct timespec *
get_ts(struct timespec *ts, unsigned long nsec)
{
    struct timeval tv;
    gettimeofday(&tv, 0);
    ts->tv_sec = tv.tv_sec;
    ts->tv_nsec = tv.tv_usec * 1000 + nsec;
    if (ts->tv_nsec >= PER_NANO) {
        ts->tv_sec++;
        ts->tv_nsec -= PER_NANO;
    }
    return ts;
}

static void *
thread_timer(void *dummy)
{
    struct timespec ts;

    native_mutex_lock(&timer_thread_lock);
    native_cond_broadcast(&timer_thread_cond);
#define WAIT_FOR_10MS() native_cond_timedwait(&timer_thread_cond, &timer_thread_lock, get_ts(&ts, PER_NANO/100))
    while (system_working > 0) {
        int err = WAIT_FOR_10MS();
        if (err == ETIMEDOUT);
        else if (err == 0 || err == EINTR) {
            if (rb_signal_buff_size() == 0) break;
        }
        else rb_bug("thread_timer/timedwait: %d", err);

#ifndef __CYGWIN__
        if (signal_thread_list_anchor.next) {
            FGLOCK(&signal_thread_list_lock, {
                struct signal_thread_list *list;
                list = signal_thread_list_anchor.next;
                while (list) {
                    ubf_select_each(list->th);
                    list = list->next;
                }
            });
        }
#endif
        timer_thread_function(dummy);
    }
    native_mutex_unlock(&timer_thread_lock);
    return NULL;
}

static void
rb_thread_create_timer_thread(void)
{
    rb_enable_interrupt();

    if (!timer_thread_id) {
        pthread_attr_t attr;
        int err;

        pthread_attr_init(&attr);
#ifdef PTHREAD_STACK_MIN
        pthread_attr_setstacksize(&attr,
                                  PTHREAD_STACK_MIN + (THREAD_DEBUG ? BUFSIZ : 0));
#endif
        native_mutex_lock(&timer_thread_lock);
        err = pthread_create(&timer_thread_id, &attr, thread_timer, 0);
        if (err != 0) {
            native_mutex_unlock(&timer_thread_lock);
            rb_bug("rb_thread_create_timer_thread: return non-zero (%d)", err);
        }
        native_cond_wait(&timer_thread_cond, &timer_thread_lock);
        native_mutex_unlock(&timer_thread_lock);
    }
    rb_disable_interrupt(); /* only timer thread recieve signal */
}

static int
native_stop_timer_thread(void)
{
    int stopped;
    native_mutex_lock(&timer_thread_lock);
    stopped = --system_working <= 0;
    if (stopped) {
        native_cond_signal(&timer_thread_cond);
    }
    native_mutex_unlock(&timer_thread_lock);
    return stopped;
}

#ifdef HAVE_SIGALTSTACK
int
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
{
    void *base;
    size_t size;
    const size_t water_mark = 1024 * 1024;
    STACK_GROW_DIR_DETECTION;

    if (th) {
        size = th->machine_stack_maxsize;
        base = (char *)th->machine_stack_start - STACK_DIR_UPPER(0, size);
    }
#ifdef STACKADDR_AVAILABLE
    else if (get_stack(&base, &size) == 0) {
        STACK_DIR_UPPER(base = (char *)base + size, (void)0);
    }
#endif
    else {
        return 0;
    }
    size /= 5;
    if (size > water_mark) size = water_mark;
    if (STACK_DIR_UPPER(1, 0)) {
        if (size > ~(size_t)base+1) size = ~(size_t)base+1;
        if (addr > base && addr <= (void *)((char *)base + size)) return 1;
    }
    else {
        if (size > (size_t)base) size = (size_t)base;
        if (addr > (void *)((char *)base - size) && addr <= base) return 1;
    }
    return 0;
}
#endif

#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */

/* [previous][next][first][last][top][bottom][index][help] */